Prof. Dr. Pham Huu Anh Ngoc

Head Of Department

A2.606

(84-28) 37244270 – Ext: 3235

phangoc@hcmiu.edu.vn

EDUCATION

  • Bachelor (1985-1989) , Mathematics, Hue University of Education, Vietnam.
  • Master  (1992-1994),   Mathematical Analysis, Hue University of Education, Vietnam. 
  • Ph.D.  (1998-2000), Applied  Mathematics, Institute of Mathematics, Hanoi-Vietnam.

RESEARCH INTERESTS

  • Stability of  dynamical systems and  applications: Deterministic and stochastic systems.
  • Positive systems and applications, positive C_0 semi-groups
  • Adaptive control for   dynamical systems and applications

Xem thêm...

  • Stability C_0 semi-groups.
  • Mathematical Control of systems

TEACHING

  • Advanced Theory of  Measure  and Integrals
  • Modern  Analysis
  • Differential Equations, Control Theory

Xem thêm...

  • Môn giảng dạy 4
  • Môn giảng dạy 5

PUBLICATIONS

   

  • Books:
  • Monograph: P.H.A. Ngoc, Exponential Stability of Functional Differential Equations (in Vietnamese), 207 pages, Vietnam National University-HCMC publisher, 2018.Articles in journals or book chapters:If you are interested in some papers, send me an email.
  • 101)P.H.A.Ngoc, T.Q.Ky, Novel criteria for exponential stability in mean square of stochastic delay differential equations with Markovian switching, European Journal of Control, 2024, accepted for publication.
  • 100) L. T. Hieu, P. H. A. Ngoc and T. B. Tran, Global exponential stability of nonlinear delayed difference systems with Markovian switching, International Journal of Systems Science, Vol.55, No. 6, 1104-1113, 2024.
  • 99) P.H.A.Ngoc, T. Q. Ky, On contraction of functional differential equations with Markovian switching, Systems & Control Letters, Volume 183, January 2024, 105675.
  • 98) P.H. A. Ngoc, L. T. Hieu, T.B. Tran, On exponential stability of switched functional differential equations with average dwell-time, Communications in Contemporary Mathematics, 2023, accepted for publication.
  • 97) P.H.A. Ngoc, T.Q. Ky, T.B. Tran, N.D.Huy, On exponential stability in mean square of nonlinear delay differential equations with Markovian switching, IMA Journal of Mathematical Control and Information, OXFORD ACADEMIC, 2023, accepted for publication.
  • 96) P.H. A. Ngoc, N.L. Son, T. Q. Ky, On exponential contraction and expansion of Markovian switching diffusions, International Journal of Control, 2023, accepted for publication.
  • 95) P.H.A. Ngoc, Novel criteria for exponential stability of neutral functional differential equations, IEEE Transactions on Automatic control, December issue, 2023, 7818 – 7823.
  • 94) P.H.A.Ngoc, T.Q.Ky, On stability of numerical solutions of neutral stochastic delay differential equations with time-dependent delay, Mathematical Methods in the Applied Sciences, 46 (9), 2023, 11246-11261.
  • 93) L.T. Hieu, P.H.A. Ngoc, T.B. Tran, N.D. Huy, Explicit criteria for exponential stability in mean square of stochastic difference systems with delays, IMA Journal of Mathematical Control and Information, OXFORD ACADEMIC, 39 (4), 1143-1156, 2022.
  • 92) P.H.A.Ngoc, T.Q.Ky, On stability of solutions of stochastic delay differential equations, Systems and Control Letters, Volume 169, November 2022, 105384.
  • 91) P.H.A. Ngoc, L.T. Hieu, A novel approach to exponential stability in mean square of stochastic difference systems with delays, Systems and Control Letters, Vol. 168, 2022, Article 105372.
  • 90) P.H.A. Ngoc, L. T. Hieu, On contraction in mean square of stochastic difference systems with delays, Communications in Nonlinear Science and Numerical Simulation, Volume 111, August 2022, 106448.
  • 89) P.H.A. Ngoc, New results on exponential stability in mean square of neutral stochastic equations with delays, International Journal of Control, 95 (11), 3030-3036, 2022.
  • 88) P.H.A. Ngoc, New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay, Evolution Equations and Control Theory, August 2022, 11(4): 1191-1200.
  • 87) P.H.A. Ngoc, L.T. Hieu, On uniform asymptotic stability of nonlinear Volterra integro-differential equations, International Journal of Control, Volume 95, Issue 3, 2022.
  • 86)P.H.A. Ngoc, New criteria for mean square exponential stability of stochastic delay differential equations, International Journal of Control 94:12, 2021, 3474-3482.
  • 85) P.H.A. Ngoc, T.B. Tran, N.D. Huy, New criteria for exponential stability of linear neutral differential systems with distributed delays, Kybernetika, Vol. 57 (5), 2021, 776-784.
  • 84) P.H.A. Ngoc, On exponential stability in mean square of neutral stochastic functional differential equations, Systems & Control Letters, Vol. 154, 2021, Article 104965
  • 83) P.H.A. Ngoc, L.T. Hieu, A novel approach to mean square exponential stability of stochastic delay differential equations, IEEE Transactions on Automatic Control, Issue 5, 2021, 2351 – 2356.
  • 82) P.H.A. Ngoc, L.T. Hieu, Exponential stability of integro-differential equations and applications, Applied Mathematics Letters, Vol. 107, 2021, 107127.
  • 81) P.H.A. Ngoc, A new approach to mean square exponential stability of stochastic functional differential equations, IEEE Control Systems Letters, Vol. 5, Issue 5, 1645 – 1650, 2021.
  • 80)P.H.A. Ngoc, Contraction of stochastic differential equations, Communications in Nonlinear Science and Numerical Simulation, Volume 95, April 2021, 105613.
  • 79) P.H.A. Ngoc, Stability of coupled functional differential-difference equations, International Journal of Control, 93 (8), 1920-1930, 2020.
  • 78) P.H.A. Ngoc, T.B. Tran, C.T. Tinh, N.D. Huy, Scalar criteria for exponential stability of functional differential equations, Systems and Control Letters, Vol. 137, March 2020, 104642.
  • 77) P.H.A. Ngoc, Novel criteria for exponential stability in mean square of stochastic functional differential equations, Proceedings of the American Mathematical Society, Vol. 148, 3427-3436, 2020.
  • 76) P.H.A. Ngoc, Explicit criteria for mean square exponential stability of stochastic linear differential equations with distributed delays, Vietnam Journal of Mathematics, Vol. 48, 159–169, 2020.
  • 75) P.H.A. Ngoc, C.T. Tinh, T.B. Tran, Further results on exponential stability of functional differential equations, International Journal of Systems Science, Vol. 50, 1368-1377, 2019.
  • 74) P.H.A. Ngoc, Explicit criteria for mean square exponential stability of stochastic differential equations, Applied Mathematics Letters, Volume 93, 22-28, 2019.
  • 73) P.H.A. Ngoc, T.T. Anh, Stability of nonlinear Volterra equations and applications, Applied Mathematics and Computation, Vol. 341, 1-14, 2019.
  • 72) P.H.A. Ngoc, Hieu Trinh, L.T. Hieu, N.D. Huy, On contraction of nonlinear difference equations with time-varying delays, Mathematische Nachrichten, Volume 292, Issue 4, 2019, 859-870.
  • 71) P.H.A. Ngoc, T.B Tran, C.T. Tinh, N.D. Huy, Novel criteria for exponential stability of linear non-autonomous functional differential equations, Journal of Systems Science and Complexity, Vol.32, 479-495, 2019
  • 70) P.H.A. Ngoc, Hieu Trinh, Contraction of functional differential equations, SIAM Journal on Control and Optimization, Vol. 56, 2377-2397, 2018.
  • 69) P.H.A. Ngoc, Explicit criteria for exponential stability of nonlinear singular equations with delays, Nonlinear Dynamics Vo. 93, 385-393, 2018.
  • 68) P.H.A. Ngoc, T.T. Anh, New stability criteria for nonlinear Volterra integro-differential equations, Acta Mathematica Vietnamica Volume, Vol. 43, Issue 3, pp 485–501 2018.
  • 67) P.H.A. Ngoc, Exponential stability of coupled linear delay time-varying differential-difference equations, IEEE Transactions on Automatic Control, Vol.63, No.3, 843-848, 2018.
  • 66) P.H.A. Ngoc, TB Tran, CT. Tinh, On stability of nonlinear neutral functional differential equations, ESAIM: Control, Optimisation and Calculus of Variations, Vol. 24, No. 1, 89-104, 2018.
  • 65) P.H.A. Ngoc, Hieu Trinh, Stability analysis of nonlinear neutral functional differential equations, SIAM Journal on Control and Optimization, Volume 55, Issue 6 2017, 3947-3968.
  • 64) P.H.A. Ngoc, Quang Ha, On exponential stability of linear non-autonomous functional differential equations of neutral type, International Journal of Control, Vol.90, Issue 3, 454-462, 2017.
  • 63)T.T. Anh, P.H.A. Ngoc, New stability criteria for linear Volterra time-varying integro-differential equations, Taiwanese Journal of Mathematics, Vol. 21, No. 4, 841-863, 2017.
  • 62)P.H.A. Ngoc, L.T. Hieu, Stability of nonlinear Volterra equations, Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 65, No. 3, 333-340, 2017.
  • 61) P.H.A. Ngoc, Stability of periodic solutions of nonlinear time-delay systems, IMA Journal of Mathematical Control and Information (IMA/Oxford University Press), Volume 34, Issue 3, 2017, pp. 905–918.
  • 60) P.H.A. Ngoc, C.T. Tinh, Exponential stability of functional differential systems, Vietnam Journal of Mathematics, December 2016, Volume 44, Issue 4, pp 727–738.
  • 59) P.H.A. Ngoc, C.T. Tinh, Explicit criteria for exponential stability of time-varying systems with infinite delay, Mathematics of Control, Signals and Systems (2016), 28:4, 1-30.
  • 58) P.H.A. Ngoc, Hieu Trinh, Novel criteria for exponential stability of linear neutral time-varying differential systems, IEEE Transactions on Automatic Control (2016), (6), 1590-1594.
  • 57) P.H.A. Ngoc, C.T. Tinh, Robust stability of positive linear time delay systems under time-varying pertubations, Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 63 (2015), 947-954.
  • 56) P.H.A. Ngoc, Stability of nonlinear differential systems with delay, Evolution Equations and Control Theory Vol. 4 (2015), 493-505.
  • 55) P. H. A. Ngoc, Novel criteria for exponential stability of nonlinear differential systems with delay, IEEE Transactions on Automatic Control Vol.60 (2015), 485-490.
  • 54) P. H. A, Ngoc, L. T. Hieu, On exponential stability of nonlinear Volterra difference equations in phase spaces, Mathematische Nachrichten Vol. 288 (2015), 483-451
  • 53) P. H. A. Ngoc, N. D. Huy, Exponential stability of linear delay difference equations with continuous time, Vietnam Journal of Mathematics, Volume 43 (2015), 195-205, dedicated to the 65th birthday of Prof. Nguyen Khoa Son.
  • 52) P.H.A. Ngoc, C.T. Tinh, New criteria for exponential stability of linear time-varying differential systems with delay, Taiwanese Journal of Mathematics, Vol.18 (2014), 1759-1774.
  • 51) P. H. A. Ngoc, L. T. Hieu, Exponential stability of Volterra difference equations with infinite delay, Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 62 (2014), 125-137.
  • 50) P. H. A. Ngoc, Robust stability of positive linear systems under time-varying perturbations, Numerical Functional Analysis and Optimization, Vol. 35 (2014), 739-751.
  • 49) P. H. A. Ngoc, Positivity and stability of linear functional differential equations with infinite delay,
    Mathematische Nachrichten,Vol. 287 (2014) 803–824.
  • 48) P. H. A. Ngoc, New criteria for exponential stability of nonlinear time-varying differential systems, International Journal of Robust and Nonlinear Control, Vol. 24 (2014) 264–275.
  • 47) P. H. A. Ngoc and Le Trung Hieu, New criteria for exponential stability of nonlinear difference systems with time-varying delay, International Journal of Control 89 (2013), 1446-1451.
  • 46) P. H. A. Ngoc, Novel criteria for exponential stability of functional differential equations, Proceedings of the American Mathematical Society, 141 (2013), 3083-3091.
  • 45) P.H.A. Ngoc, On stability of a class of integro-differential equations, Taiwanese Journal of Mathematics, 2013, Vol. 17, 407-425.
  • 44) P. H. A. Ngoc, Stability of positive differential systems with delay, IEEE Transactions on Automatic Control, 2013, Vol. 58, 603-609.
  • 43) P. H. A. Ngoc, Le Trung Hieu, On stability of discrete-time systems under nonlinear time-varying perturbations, Advances in Difference Equations, 2012: 120, 1-10.
  • 42) P. H. A. Ngoc, On exponential stability of Volterra differential equations with delay, Applied Mathematics and Computation, Vol. 218, 2012, 11922-11930.
  • 41) P. H. A. Ngoc, On exponential stability of nonlinear differential systems with time-varying delay, Applied Mathematics Letters, Vol. 25, 2012, 1208-1213.
  • 40) A. Ilchmann, P. H. A. Ngoc, Stability and robust stability of positive Volterra systems, International Journal of Robust and Nonlinear Control, Vol. 22, Issue 6, 604-629, 2012.
  • 39) P. H. A. Ngoc, On a class of positive linear differential equations with infinite delays, Systems and Control Letters,Vol. 60, 1038-1044, 2011.
  • 38) P. H. A. Ngoc, Stability of linear Volterra-Stieltjes differential equations, SIAM Journal on Control and Optimization, Vol.49, No.1, 205-226, 2011.
  • 37) S. Murakami, P. H. A. Ngoc, On stability and robust stability of positive linear Volterra equations in Banach lattices. Central European Journal of Mathematics, Vol. 8, 2010, 966-984.
  • 36) P. H. A. Ngoc, On positivity and stability of linear Volterra Stieltjes differential systems. Lecture Notes in Control andInformation Sciences (LNCIS) Vol. 389, 2009, 111-121.
  • 35) A. Ilchmann, P. H. A. Ngoc, On positivity and stability of linear time-varying Volterra equations, Positivity, Vol. 13, 671-681, 2009.
  • 34) P. H. A. Ngoc, On positivity and stability of linear Volterra systems with delay, SIAM Journal on Control and Optimization, Vol. 48, No. 3, 1939-1960, 2009.
  • 33) P. H. A. Ngoc, S. Murakami, T. Naito, J. S. Shin, Y. Nagabuchi, On positive linear Volterra-Stieltjes differential equations. Integral Equations and Operator Theory, Vol. 64, 325-355, 2009
  • 32) P. H. A. Ngoc, T. Naito, J. S. Shin, S. Murakami, Stability and robust stability of positive linear Volterra difference equations, International Journal of Robust and Nonlinear Control, Vol. 19, 552-569, 2009.
  • 31) T. Naito, P. H. A. Ngoc, J. S. Shin, Lyapunov exponents of solutions to linear differential equations with periodic forcing functions, Journal of Mathematical Analysis and Applications, Vo. 342, no 1, 349-353, 2008:
  • 30) P. H. A. Ngoc, T. Naito, J. S. Shin, S. Murakami, On stability and robust stability of positive linear Volterra equations, SIAM Journal on Control and Optimization, Vol. 47, no. 2, 975-996 2008.
  • 29) T. Naito, P. H. A. Ngoc and J. S. Shin, Representations and asymptotic behavior of solutions to periodic linear difference equations (II), Hiroshima Mathematical Journal Vol. 38, no. 1, 135-154 2008.
  • 28) T. Naito, P. H. A. Ngoc and J. S. Shin, Representations and asymptotic behavior of solutions to periodic linear difference equations, Funkcialaj Ekvacioj, Vol. 51, 55-80 2008.
  • 27) P. H. A. Ngoc, Stability radii of positive linear Volterra-Stieltjes equations, Journal of Differential Equations, Vol. 243, 101-122, 2007.
  • 26) P. H. A. Ngoc, T. Naito, J. S. Shin, On stability of a class of positive linear functional difference equations, Mathematics of Control, Signals and Systems, Vol. 19, 361-382, 2007.
  • 25) T. Naito, J. S. Shin, S. Murakami, P. H. A. Ngoc, Characterizations of linear Volterra integral equations with nonnegative kernels, Journal of Mathematical Analysis and Applications, Vol. 335 2007, 298-313.
  • 24) T. Naito, J. S. Shin, S. Murakami, P. H. A. Ngoc, Characterizations of positive linear Volterra integro-differential systems, Integral Equations and Operator Theory, Vol. 58, 255-272, 2007.
  • 23) P. H. A. Ngoc, T. B. Tran, T. Naito, Stability radii of order higher linear difference systems under multi-perturbations, Journal of Difference Equations and Applications, Vol. 13, No.1, 13-24, 2007.
  • 22) P. H. A. Ngoc, T. Naito, Stability radii of linear parameter-varying differential systems and applications, Journal of Mathematical Analysis and Applications, Vol. 328, 170-191 2007.
  • 21) P. H. A. Ngoc, T. Naito, J. S. Shin, Characterizations of positive linear functional differential equations, Funkcialaj Ekvacioj, Vol. 50, 1-17, 2007.
  • 20) P. H. A. Ngoc, N. V. Minh, T. Naito, Robust Stability of Linear Functional Differential Equations: Stability Radii of positive Linear Functional Differential Systems in Banach spaces, International Journal of Evolution Equations, Vol. 2, No 1, 75-97, 2007.
  • 19) P. H. A. Ngoc, T. Naito, D-stability radius of linear discrete-time systems, Numerical Functional Analysis and Optimization, Vol. 27, No. 5-6, 667-683, 2006.
  • 18) P. H. A. Ngoc, T. Naito, J. S. Shin, Global optimization problems in stability analysis of linear dynamical systems. Positive Systems: Theory and Applications, Lecture Notes in Control and Information Sciences (LNCIS), Vol 341 311-318, 2006, Springer-Verlag.
  • 17) P. H. A. Ngoc, B. S. Lee, A characterization of spectral abscissa and Perron-Frobenius theorem of positive linear functional differential equations, IMA Journal of Mathematical Control and Information, Vol. 23 259-268, 2006.
  • 16) P. H. A. Ngoc, A Perron-Frobenius theorem for a class of positive quasi- polynomial matrices, Applied Mathematics Letters, Vol.19, 747-751, 2006.
  • 15) P. H. A. Ngoc, T. Naito, New characterizations for exponential dichotomy and exponential stability of linear difference equations, Journal of Difference Equations and Applications, 11 2005, 909- 918.
  • 14) P. H. A. Ngoc, B. S. Lee, Some sufficient conditions for exponential stability of neutral linear functional differential equations, Applied Mathematics and Computation, 170, 2005, 515-530.
  • 13) P. H. A. Ngoc, Strong stability radii of positive linear time-delay systems, International Journal of Robust and Nonlinear Control, Vol.15, 2005, 459-472 .
  • 12) P. H. A. Ngoc, N. K. Son, Stability radii of positive linear functional differential equations under multi-perturbations, SIAM Journal on Control and Optimization, Vol. 43, No.6, 2005, 2278-2295.
  • 11) P. H. A. Ngoc, N. K. Son, Stability radii of linear systems under multi-perturbations, Numerical Functional Analysis and Optimization, 25, 2 2004, 221-238.
  • 10) P. H. A. Ngoc, B. S. Lee, N. K. Son, Perron-Frobenius theorem for positive polynomial matrices, Vietnam Journal of Mathematics, Vol. 32, 2004, 475-481.
  • 9) D. Hinrichsen, N. K. Son, P. H. A. Ngoc, Stability radii of higher order positive difference systems. Systems and Control Letters Vol 49, 2003, 377-388.
  • 8) P. H. A. Ngoc, N. K. Son, Stability radii of positive linear difference equations under affine parameter perturbations. Applied Mathematics and Computation Vol.134, 2003, 577-594.
  • 7) N. K. Son, P. H. A. Ngoc, Robust stability of linear functional differential equations. Advanced Study in Contemporary Mathematics, 3 (2001), 43-59.
  • 6) N. K. Son, P. H. A. Ngoc, Stability radii of linear discrete-time systems with delays. Vietnam Journal of Mathematics, 29: 4, 2001, 379-384.
  • 5) N. K. Son, P. H. A. Ngoc, Stability radii of linear functional differential equations. Vietnam Journal of Mathematics, 29: 1, 2001, 85-89.
  • 4) P. H. A. Ngoc, Robust stability of linear delay systems under fractional parameter perturbations. East-West Journal of Mathematics., 2, 2000, 127-139.
  • 3) N. K. Son, P. H. A. Ngoc, Stability of linear infinite dimensional systems under affine and fractional perturbations. Vietnam Journal of Mathematics, 27: 2, 1999, 153-167.
  • 2) N. K. Son, P. H. A. Ngoc, Robust stability of positive linear delay systems under affine parameter perturbations. Acta Mathematica Vietnamica, Vol . 24, 1999, 353-372.
  • 1) N. K. Son, P. H. A. Ngoc, Complex stability radius of linear delay systems. Vietnam Journal of Mathematics, 26: 4, 1998, 379-383.

OTHER INFORMATION

  • 1996-2004: Department of Mathematics, University of Pedagogy, Hue University, Vietnam. Position: Lecturer
  • 4/2004-4/2005: Department of Mathematics,  Kyungsung university, Busan, South Korea, Position: Postdoctoral fellow.
  • 8/2005-8/2007: Department of Mathematics,  The University of Electro-Communications, Tokyo, Japan
    Position: JSPS Postdoctoral fellow.
  • 10/2007-10/2009: Institute of Mathematics, Ilmenau Technical University, Germany. Position: Alexander von Humboldt experienced researcher.
  • 2010-10/2019: Department of Mathematics,   International University, Vietnam National University-HCMC,
    Position: Associate Professor.
  • 10/2019: Department of Mathematics,   International University, Vietnam National University-HCMC,
    Position:  Full Professor
  • Projects:
  • On stability of dynamical systems, Governed by the Vietnam National University-HCMC, (2/2023-2/2025).
  • Asymptotic stability of solutions of some classes of dynamical systems, Governed by the Vietnam National University-HCMC, (2/2021-2/2023).
  • On stability of stochastic differential equations, Governed by the National Foundation for Science and Technology Development (NAFOSTED), 2019-2021.
  • Asymptotic behavior of solutions of functional differential equations, Governed by the Vietnam National University-HCMC, (2/2019-2/2021).
  • On stability of some classes of dynamical systems (2017-2018), Governed by the National Foundation for Science and Technology Development (NAFOSTED).
  • A new approach to stability of dynamical systems (7/2015-7/2017), Governed by the Vietnam National University-HCMC.
  • On stability of some classes of time-varying functional differential equations (7/2013-7/2015), Governed by the National Foundation for Science and Technology Development (NAFOSTED).
  • On stability of linear Volterra equations and functional differential equations (2012-2013), Governed by the Vietnam National University-HCMC.
  • On stability and robust stability of linear Volterra equations (2010-2012), Governed by the National Foundation for Science and Technology Development (NAFOSTED).
  • On robust stability of linear difference systems (2004-2006), Governed by the Ministry of Educations.
  • Professional activities:
  • Member of Scientific Committee in Mathematics of National Foundation for Sciences & Technology Development (2017-2019, 2019-2021)
    Member of the Vietnamese Mathematical Society
    Reviewer of Mathematical reviews of the American Mathematical Society.
    I have reviewed articles for:SIAM Journal on Control and Optimization
    IEEE Transactions on Automatic Control
    Automatica
    International Journal of Control
    Asian journal of control
    Numerische Mathematik (Springer-Verlag publisher)
    Systems & Control Letters (Elsevier publisher)
    Journal of Mathematical Analysis and Applications (Elsevier publisher)
    Applied Mathematical Modelling (Elsevier publisher)
    Computers & Mathematics with Applications (Elsevier publisher)
    AIMS journals (American Institute of Mathematical Sciences)
    Journal of Difference Equations and Applications (Taylor Francis Group)
    International Journal of Robust and Nonlinear Control (John Wiley and Sons publisher)
    Applied Mathematics and Computations (Elsevier publisher).
    Acta Mathematica Vietnamica,
    Vietnam Journal of Mathematics.